
PHYSICAL REVIEW E 70, 011607 ~2004!
Numerical study of the stability of double fingers with the phase-field model
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Doublon is one of the typical patterns found in crystal growth. It is a bound state of two fingerlike patterns.
In this paper, we obtain a phase diagram for doublons with numerical simulations of the phase-field model.
Numerical simulations are performed in a channel. Two small seeds of crystal with different sizes are set on the
left side of the channel as an initial condition, in order to find whether the two fingers grow into a doublon or
one finger overcomes the other owing to mutual competition. It is confirmed that a stable doublon is formed
when the undercooling is large and the anisotropy is weak. Furthermore, we find a doublon with oscillating
groove in a certain parameter range. We investigate more carefully the transition between the doublon and the
dendrite by changing the anisotropy parameters stepwise, and show that the difference of the tip velocities of
the doublon and the dendrite increases continuously from zero at a critical value of anisotropy.
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I. INTRODUCTION

Crystal growth has been intensively studied as a prob
of pattern formations far from equilibrium@1–3#. Many fas-
cinating patterns such as dendrites have been studied in
periments of crystal growth@4–6# and computer simulation
@7–9#. Recently, the phase-field model is one of the popu
methods of computer simulations for crystal growth@10–13#.

Doublon is one of the typical growth patterns in diffusio
fields. It takes a form composed of a pair of fingers. Ther
a narrow groove between the two fingers. It has the mir
symmetry with respect to the center of the groove. This d
blon structure was first predicted by Ben Amar and Brene
an asymmetric dendrite along the sidewall@14#. They
showed analytically that the growth velocity of doublons
proportional to the ninth power of the undercooling, which
quite different from the normal dendrite. The doublons we
found in several experiments. Jamgotchianet al. and Aka-
matsuet al. found some doublons in experiments of dire
tional solidification@15#. They confirmed that the doublon
appear under the condition of low anisotropy and high
dercooling. Furthermore, they discovered that the width
groove is in inverse proportion to the undercooling. Los
et al. investigated the formation and the stability of do
blons, changing the wavelength and strength of fluctuati
in experiments of directional solidification and numeric
simulations of the phase-field model@16#. The doublons
were also found in an experiment of a drying water film
Lipson’s group@17#. Doublons are considered to exist in
parameter region where the dense branching morpho
~DBM! appears. Ihle, Mu¨ller-Krumbhaar and Brener dis
cussed qualitatively the stability region of doublons in a p
rameter space of surface tension anisotropy and underco
@18,19#. Brener et al. first observed the doublon structu
with a numerical simulation in a channel@20# and a more
careful analysis of the transition from the dendrite to t
doublon in a channel was done by Kupfermanet al. @21#.

A phase-field model is a useful model for numerical sim
lation of growth patterns. It has a form of coupled equatio
of the Ginzburg-Landau equation and the diffusion equati
1539-3755/2004/70~1!/011607~9!/$22.50 70 0116
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For melt growth, the Ginzburg-Landau equation represe
the dynamics of phase transition from liquid to solid. T
diffusion equation expresses heat conduction of the la
heat released at the growing interface. An order parametp
changes smoothly at an interface of the liquid and the so
An appealing point of the phase-field model is that we ne
not solve the difficult Stefan problem with moving bounda
conditions at the interface. By the improvement of the pha
field model by Karma and Rappel, it became possible
simulate crystal growth without the kinetic effect@11#.

In this paper, we investigate the stability of doublons in
space of anisotropy parameters and undercooling. To find
stable region, we perform numerical simulations of t
phase-field model in a channel. Two seeds of crystals w
different sizes are initially set on the left side of the chann
They grow into two fingers and interact with each oth
through the diffusion field. If one finger wins and the t
positions of the two fingers separate away, we judge tha
doublon has not been formed at the parameter. On the o
hand, if the other finger catches up and the tip positio
approach, we judge that a doublon is stable at the param
We use a channel system to focus on the competitive t
evolution of two fingers. In contrast, if we use a large squ
box for the simulation, many fingers are created natura
and it will become difficult to judge the formation of dou
blons. A channel system is simpler in this sense, however,
effects of the sidewalls of the channel are not negligible
pecially for small undercooling, and it makes the transiti
between the dendrite and the doublon more complicated
shown by Kupfermanet al. @21#.

In Sec. II, we introduce our model equation and the n
merical method. In Sec. III, we show the numerical resu
In Sec. III A, we study the tip velocity of doublons in case
no anisotropy. The growing velocity is in proportional to th
ninth power of the undercooling. In Sec. III B, we show th
results of simulations in case of no kinetic effect, and in S
III C, involving kinetic effect.

In Sec. IV A, we study the transition between the doubl
and the dendrite, changing the anisotropy parameters s
©2004 The American Physical Society07-1
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wise, and in Sec. IV B we study groove oscillation
doublons more in detail.

II. MODEL EQUATIONS

The phase-field model is expressed as

t~u!] tp5$p2lu~12p2!%~12p2!

1]x$W~u!2]xp2W~u!W8~u!]yp%

1]y$W~u!2]yp1W~u!W8~u!]xp%, ~1!

] tu5D¹2u1] tp/2, ~2!

wherep is an order parameter,p51 and21 correspond to
solid and liquid phase, respectively,l is a dimensionless pa
rameter that controls the coupling strength between the o
parameter and the diffusion field,t~u! is an anisotropic time
constant,W(u)2 is an anisotropic diffusion constant an
W8(u)5dW/du. The variableu represents the dimension
less temperature:u5(T2TM)/(L/Cp) whereT, TM , L, and
Cp are, respectively, the temperature, the melting temp
ture, the latent heat, and the specific heat at constant p
sure. The diffusion constant foru is denoted byD. The term
] tp/2 in Eq. ~2! expresses the release of latent heat at
interface. The angleu[arctan(]yp/]xp) represents the direc
tion normal to the contour of constantp. The fourfold rota-
tional symmetry is assumed for the two types of anisotrop

W~u!511es cos~4u!, ~3!

t~u!5W~u!$11ek cos~4u!%, ~4!

where the parameterses and ek denote strength of surfac
tension anisotropy and that of kinetic anisotropy respectiv
Constants parts ofW andt are assumed to be 1 in Eqs.~3!
and ~4!. They determine the spatial and time scales of
order parameter. In this paper, we express length and
with these units. Karma and Rappel derived the sha
interface limit of the phase-field model as

] tu5D¹2u, ~5!

ui52d0~u!k2b~u!vn . ~6!

Equation~5! is the diffusion equation foru and Eq.~6! is the
generalized Gibbs-Thomson condition, respectively, wh
d0(u), k, b~u! and vn denote respectively the anisotrop
capillary length, the interface curvature, the anisotropic
netic coefficient and the normal interface velocity. These
rameters can be expressed usingW(u) andt (u) as

d0~u!5
I

lJ
$W~u!1W9~u!%, ~7!

b~u!5
I

lJ

t~u!

W~u! F12l
W2~u!

2Dt~u!

K1JF

I G , ~8!
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where I 52&/3, J516/15,F5& ln 2, andK50.13604. If
the relationt(u)5W(u)2 is assumed and the parameterl is
chosen asl5(2ID )/(K1JF), the anisotropic kinetic coef-
ficient b~u! becomes zero, that is, the kinetic effect becom
negligible, and then the capillary length is expressed
d0(u)5d0@1215es cos(4u)#, whered05I /(lJ)'0.2769. If
the parameterl is chosen such asl5(1.8ID )/(K1JF), the
anisotropic coefficientsd0(u) and b~u! are expressed a
d0(u)5d0@1215es cos(4u)# and b(u)5d0@0.11(ek
20.9es)cos 4u# where d05I /(lJ)'0.3077. We use thes
two parameters as typical cases without the kinetic effect
with kinetic effect. We have performed numerical simul
tions of the phase-field model~1!, ~2! with the finite differ-
ence method of gridsizeDx50.4 and timestepDt50.015.
The simulations were performed in a channel~a rectangular
box! of size Lx3Ly54803192 ~Sec. III! and 4803200
~Sec. IV!. Kupfermanet al. studied an asymmetric dendrit
~half of the doublon! in a channel@21# by solving numeri-
cally an integro-differential equation for the interface. T
channel widthLy of their system is 2, the capillary lengthd0
is 0.01, and the ratio isLy /d05200. On the other hand, ou
system has a ratioLy /d0'200/0.27695722, although two
fingers grow in our system. The diffusion constant is fixed
be D52. The anisotropy parameterses and ek are changed
from 0 to 0.06. On the other hand, Kupfermanet al. studied
the transitions between the dendrite and the doublon at t
parameterses50,0.006 and 0.00667. The initial condition
are p(x,y,t50)521 andu(x,y,t50)52D, whereD de-
notes the dimensionless undercooling, except for the reg
of the crystal seeds. Inside of crystal seeds,p(x,y,t50)
51 and u(x,y,t50)50. No-flux boundary conditions are
used atx50 and y50,Ly , and fixed boundary condition
p(x,y)521,u(x,y)52D are used atx5Lx in the simula-
tions.

III. SIMULATION RESULTS

A. Tip velocity of doublon

First, we show numerical results for the tip velocity
doublons in an isotropic system, i.e.,es5ek50. Two small
seeds of crystal of the same size are set on the left side o
channel as an initial condition. Doublons with the mirro
symmetry grow naturally. We have measured the tip veloc
changing the degree of undercoolingD. We have investigated
both cases with and without the kinetic effect. In Fig. 1~a!,
we show the tip velocity as a function ofD for the case of no
kinetic effect. Figure 1~b! is the same type plot as Fig. 1~a!
but the kinetic effect is involved. The plus marks denote
results of numerical simulations, and the solid lines are
ting curves of power laws.

In the theory of Ben Amar and Brener, the tip velocity
proportional to the ninth power ofD for small D @14#, al-
though they consider a system ofLy5`. Kupfermanet al.
showed that an asymmetric dendrite~doublon! cannot exist
below a critical undercooling aboutD'0.66. We have ob-
served in our simulations that the groove width between
two fingers is sufficiently small and the effects of the sid
walls seem to be negligible for largeD. But whenD is de-
7-2
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creased, the tip velocityv becomes very slow and the diffu
sion lengthD/v increases up to the order ofLy/2 and then
the influence of the sidewalls becomes large. IfD is de-
creased to 0.64, we cannot regard the growth pattern c
posed of two fingers as a doublon; it looks like two indepe
dent Saffman-Taylor type fingers. So, our results do
contradict to the results of Kupfermanet al.The numerically
estimated exponents of the power law are about 9.6 in c
of negligible kinetic effect and 8.8 in case of finite kinet
effect. In both cases, the fitting curves are close to a curv
D9. That is, our result suggests that the tip velocity of do
blons satisfies approximately the scaling law found by B
Amar and Brener, although the undercoolingD is fairly large
and the doublons grow in a channel.

B. Surface tension doublon

In this section, we search for the stable region of doubl
in a parameter space of the parameteres of the surface ten-
sion anisotropy and the undercooling. We judge that a d
blon is stable, if a mirror-symmetric doublon is formed as
stable growth structure from an asymmetrical initial con
tion. To investigate it, we have set two seeds of crystal w
different sizes on the left side of the channel as an ini
condition. Both of them have a shape of a semicircle

FIG. 1. Double-logarithmic plot of the velocity dependence
the doublon on D for ~a! b(u)50 and ~b! b(u)5d030.1
50.03077.
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radius of the one seed is 1.2, and that of the other is 1.
centers of the two seeds locate at (0,Ly/221.6) and (0,Ly/2
11.6). In this section, we show the numerical results for
case of no kinetic effect, that is,l is set to be (2ID )/(K
1JF) and t(u)5W2(u). Since the surface tension aniso
ropy determines the growth direction, we call this type
doublon a surface tension doublon, as an analogue of
surface tension dendrite. Furthermore, in order to investig
the influence of the sidewalls of channel, we have used
kinds of channels withLy5192 and 96. We have obtained
roughly speaking, similar phase diagrams for the two ch
nels. However, there appeared some patterns which see
to be strongly influenced by the sidewalls in the simulatio
of Ly596, so, we show numerical results only for the cha
nel of Ly5192. In Fig. 2, we show some time evolutions
patterns. We have judged that the growth patterns are st
doublons if the tip positions for the two fingers approa
each other, and confirmed it by the fact that the diffusi
length is larger than the width of the groove of the doublo
If the diffusion length is larger than the groove width, tw
fingers interact with each other via the diffusion field and
bound state of two fingers is formed as a doublon. Fig
2~a! is an example of a stable doublon atD50.78 andes
50.005. Even if the sizes of two seeds are initially differe
a mirror-symmetric doublon is finally generated. In Fig. 2~b!
at D50.72 andes50.02, two fingers are generated but o
finger overcomes the other. The difference of the tip po
tions of two fingers increases in time. The doublon is n
formed at this parameter set. In Fig. 2~c! at D50.82 andes
50.01, the groove is partially buried, although the tip stru
ture keeps a stable one. This type of growth pattern app
in the range of high undercooling. In our phase-field mod
the interface between the solid and the liquid has a fin
thickness. On the other hand, the groove becomes narro
as the undercooling is increased. We expect that the pa
disappearance of the groove occurs when the interface th
ness becomes comparable to the groove width, so this
be an artifact of the phase-field model. In Fig. 2~d! at D
50.62 andes50.005, the growth directions of the two fin
gers are declined from the x direction, since the anisotro
parameteres is very small, and the two fingers grow like th
Saffman-Taylor fingers with very small velocities. This is
typical pattern, which appears in the range of low underco
ing. The tip velocity is very small because of the low und
cooling. Since the diffusion lengthD/v is sufficiently large
and it is comparable to or larger thanLy/2, the interaction
with the sidewalls becomes important. If the sidewall effe
are absent, a stable doublon may appear, but we could
judge it a stable doublon in our channel ofLy5192 at the
parametersD50.62 andes50.005. Kupfermanet al. also
showed that the doublon cannot exist forD,0.66 for es
50.006. A more drastic example, where a doublon could
be formed, is displayed in Fig. 2~f! at D50.72 and es
50.04. The competitive time evolution of two fingers is n
seen at all, and a single dendrite appears from the beginn
In a fairly large parameter region, we have found doublo
whose grooves are slightly oscillating, although the osci
tion gradually attenuates and stationary doublons are fin
obtained in most cases. Figure 2~e! displays a doublon

f
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FIG. 2. Several growth pat-
terns for surface tension doublon
~a! Stable doublon made by sur
face anisotropy.~b! One finger
wins. ~c! Surface tension doublon
whose groove is partially buried
~d! Two fingers pattern of surface
tension doublon.~e! Oscillating
groove. ~f! A surface tension
dendrite.
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accompanying such damping groove oscillation. In a v
narrow parameter range around~g! in Fig. 3, the groove os-
cillation does not decay and the limit cycle of groove osc
lation is observed. We study the groove oscillation more
detail in Sec. IV B.

FIG. 3. Phase diagram of surface tension doublon. The alp
bets in the figure correspond to the growth patterns in Fig. 2.
region around~a! is a parameter region where a stable doublon
appeared. In the region around~e!, the doublons with an oscillating
groove appear. The doublon structure has not been formed in
region around~b!, ~d! and ~f!. The region around~c! denotes a
region where the doublonlike pattern is stable; however, the gro
is partially buried. In a very narrow parameter range around~g!, the
groove oscillation does not decay and the limit cycle of groo
oscillation is observed.
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In Fig. 3, we show a phase diagram for the stability
doublons. This phase diagram was obtained by changinD
stepwise by 0.02 from 0.6 to 0.82 andes by 0.0025 from 0 to
0.04, and the transition lines were drawn smoothly by han
This phase diagram was drawn by observing the time ev
tions of growth patterns for each parameter set (es ,D) using
the same initial condition used for the simulations shown
Fig. 2. The alphabets in the figure correspond to the patte
shown in Fig. 2. In the regions~a!, ~c! and ~e!, stable dou-
blons have appeared. The doublons are stationary in the
gion ~a!, the groove oscillation is seen in a parameter reg
around~e!, and the groove is partially buried in the region~c!
~although it may be an artifact of the phase-field model!. In
the regions~b!, ~d! and ~f!, stable doublons have not bee
formed. A single dendrite has appeared from the beginnin
the region~f!, competitive time evolution of two fingers i
observed in the region~b! and the formation of doublons i
not observed probably owing to the finiteness ofLy in the
region~d!. In general, high undercooling and low anisotro
are favorable for the formation of doublons. If the surfa
tension anisotropy increases too much, a doublon canno
formed, instead, a stable dendrite appears. As the underc
ing is decreased too much for relatively smalles , a doublon
cannot be formed, instead, two independent Saffman-Tay
like fingers appear. We have drawn a phase diagram in Fi
using only one initial condition. The competitive time ev
lution between two fingers depends on the initial conditio
and the computation time~for example, if the size difference
of the initial two seeds is very small, it takes very long tim
for the competitive dynamics!, and therefore the boundar
line between stable doublons~a!, ~c!, ~e! and dendrites~b!,
~f! in Fig. 3 is expected to depend on the initial condition
~See the discussion in Sec. IV.! It is expected that there is n
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FIG. 4. Several growth pat-
terns for kinetic doublons.~a!
Stable doublon made by kineti
anisotropy. ~b! Tip splitting. ~c!
Kinetic doublon whose groove is
partially buried. ~d! Two finger
pattern of kinetic doublon.~e!
Oscillating groove.~f! A kinetic
dendrite.
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boundary between stable doublons~a!, ~c!, ~e! and two
Saffman-Taylor type fingers~d! if the width Ly is infinity,
since doublons exist stably even ates50 for Ly5`.

C. Kinetic doublon

Next, we show the results of numerical simulations
cluding the kinetic effect. For simplicity, the surface tensi
anisotropy is assumed to be 0, i.e.,es50. The initial condi-
tions are the same as in Sec. III B. The growth direction
determined by the kinetic anisotropy, and we call this type
doublon a kinetic doublon in this paper as an analogue of
kinetic dendrite. If the kinetic parameterek takes a negative
value, patterns grow along the channel direction. For
sake of simplicity, we express the absolute value ofek asek
hereafter. In Fig. 4, we show typical growth patterns of
netic doublons. Figure 4~a! shows a stable doublon pattern
D50.8 andek50.01. In Fig. 4~b!, a stable doublon canno
be formed and tip splittings occur atD50.8 andek50.025.
Figure 4~c! displays a doublonlike pattern atD50.82 and
ek50.01, where the groove is partially buried owing to t
large undercooling. Figure 4~d! is a pattern atD50.64 and
ek50.01. The tip velocity is very slow and the diffusio
length is sufficiently large. The doublon cannot be form
and two Saffman-Taylor-like fingers appear owing to too lo
undercooling and relatively small anisotropy. Figure 4~e! is
interpreted as a doublon with groove oscillation atD50.78
and ek50.025. Figure 4~f! shows a pattern atD50.78 and
ek50.04, in which only one finger appears from the beg
ning and it grows into a kinetic dendrite. Figure 5 is a pha
diagram for the stability of the kinetic doublon. The alph
bets in the figure correspond to the patterns shown in Fig
01160
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In the regions~a! and ~c!, stable doublons are observed.
the region~f!, a single kinetic dendrite appears from the b
ginning. In the region~d!, the tip velocity is too slow, stable
doublons are not formed, and two fingers like the Saffm
Taylor fingers appear. In the transition regions around~b! and
~e!, complicated patterns appear. In the region around~b!,
tip-splitting are observed, and in the region around~e!, the

FIG. 5. Phase diagram of kinetic doublon. The alphabets in
figure correspond to the patterns in Fig. 4. In the region around~a!,
the stable doublon has appeared. In the region around~e!, a groove
of the doublon exhibits damping oscillation or tip branching. W
can find tip splitting patterns in the region around~b!. In the region
around~d! and ~f!, a stable doublon has not been formed. In t
region around~c!, a pattern with partially buried groove has a
peared.
7-5
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groove oscillation is observed. The difference of the t
phase diagrams shown in Figs. 3 and 5 for the surface
sion doublon and kinetic doublon is discussed in Sec. V.

IV. TRANSITIONS OF DOUBLONS

A. Transitions between doublons and dendrites

In the previous section, we have shown phase diagr
for the surface tension doublon and the kinetic doubl
When the anisotropy is weak and the undercoolingD is
large, stable doublons have been observed. It is known
the dendrite is linearly~or marginally! stable if the anisot-
ropy parameter is not zero andLy5` @2,3,7#. The doublon
and the dendrite can therefore coexist in a certain param
range. That is, which structure appears depends on the in
conditions. The transitions between the dendrites and
doublons in a channel were studied in detail by Kupferm
et al. @21#. They showed that the transition from symmet
dendrites to parity-broken dendrites~doublon! is continuous
for es50 and 0.006 but it is discontinuous and the veloc
jumps ates50.00667. They also showed that both the do
blon and the dendrite are linearly stable for a certain par
eter region. Ben Amar and Brener discussed the transi
between the dendrite and the doublon for a system ofLy
5`, and expected that there is a velocity jump at the tr
sition. The width of our channel is slightly wider and o
anisotropy parameter is larger in most cases than the ca
Kupfermanet al., so the effects of the sidewalls seem to
weaker than the case of them. We will investigate whet
such a velocity jump exists in our system. To investigate
we change the anisotropy parameters slowly stepwise, s
there is hysteresis generally in bistable systems and w
pattern appears depends on the initial conditions. Our
merical procedure is as follows. Two small seeds of crys
with the same size are set on the left side of the channel a
initial condition for the doublonlike pattern at a certain sm
anisotropy parameter~for examplees50.01), and a single
small seed of crystal is set in the middle of the left side of
channel as another initial condition for the dendritic patte
at a large anisotropy parameter~for examplees50.06). If the
tip of the growth pattern reaches a critical value~for ex-
ample, x5xc5440) in a box ofLx3Ly54803200 for a
certain anisotropy parameter, the time evolution is stopp
and the numerical data for the order parameter and the
perature are saved in computer. The order parameter an
temperature profiles in the tip region@p8(x,y),u8(x,y)# are
used as the initial condition for the next anisotropy parame
as p(x,y,t50)5p8(x1340,y), and u(x,y,t50)5u8(x
1340,y). ~For example,es is increased by 0.01 for dou
blonlike patterns, andes is decreased by 0.01 for dendrit
patterns.! We have repeated the above processes by chan
the anisotropy parameter stepwise. Both doublonlike patte
and dendritic patterns keep the mirror-symmetric forms
this time evolution even if the anisotropy parameters
changed. We have calculated the tip velocities for d
blonlike patterns and dendritic patterns. Figure 6 displays
tip velocities of surface tension doublons and surface ten
dendrites for 0.01<es<0.06 for a fixed value of undercool
ing D50.75. The tip velocities of the doublons are alwa
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larger than the dendrites, but the velocity difference chan
continuously and becomes almost 0 ates50.04. We could
not find a clear jump of velocity difference predicted by B
Amar and Brener@14# in this simulation. The continuous
transition may be consistent with the results of Kupferm
et al. for small anisotropy. Cooperative interaction betwe
the two fingers makes the tip velocity of doublons faster th
that of dendrites. Since the two types of patterns have alm
the same velocity fores.0.04, doublonlike patterns with
two fingers may be interpreted as patterns composed of
independent dendrites. The parameteres50.04 can be inter-
preted as a transition point from doublons to dendrites
D50.75. We have investigated the stability of doublonli
patterns by dislocating initially the two fingers of the do
blonlike patterns. That is, the initial condition was slight
changed as p(x,y,t50)5p8(x1340,y), u(x,y,t50)
5u8(x1340,y) for x,140 andy.1005Ly/2 andp(x,y,t
50)5p8(x1344,y), u(x,y,t50)5u8(x1344,y) for x
,140 andy,1005Ly/2, wherep8(x,y) andu8(x,y) are the
saved data of the mirror-symmetric doublon. That is,
lower half of the doublon is shifted by 4 in the direction ofx.
The difference of the tip positions of the two fingers is the
fore 4 initially. We have investigated the time evolution
the difference of the tip positions. Figure 7 displays the tim
evolutions for four parameterses50.06, 0.04, 0.02, and 0.01
The differenceDXp of the tip positions increases monoto

FIG. 6. Tip velocities of doublonlike patterns~solid curve! and
dendritic patterns~dashed curve! as a function ofes for D50.75.

FIG. 7. Time evolutions for the difference of the tip position
for four parameter valueses50.06, 0.04, 0.02, and 0.01.
7-6
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nously fores50.06. The leading finger overcomes the oth
after a long run at this parameter. This corresponds to
competitive time evolution of two fingers, as seen in t
previous section. Ates50.05, the differenceDXp increases
very slowly, but it decays monotonously fores50.04 and
0.03. It means that the doublon structure with the mir
symmetry is recovered fores<0.04 after a long run, that is
the doublon structure is stable. This critical parameteres
'0.045 is almost the same as the transition parameter w
the difference between the tip velocities of the doublon a
the dendrite becomes 0. This transition point is rather lar
than the transition pointes'0.023 found in Fig. 3. This is
not a contradiction since the transition curve in Fig. 3
determined by numerical simulations starting from a cert
initial condition. This critical parameteres'0.045 is ex-
pected to be obtained when the initial size difference of
two seeds is infinitesimally small. The differenceDXp exhib-
its damping oscillation fores50.01 and 0.02. This corre
sponds to the groove oscillation in the previous section. T
groove oscillation occurs below another critical parame
es'0.025, which is smaller than the critical parameteres
'0.045 for the stability of doublons. That is, the oscillato
behavior appears inside the stable region of doublons.
transitions between the doublons and the dendrites stu
by Kupfermanet al. in a channel are very complicated fo
nonzeroes , and the oscillatory behaviors are not reported
their paper@21#. The detailed quantitative comparison wi
their results is left to future study.

We have performed the same type simulations to study
transition between kinetic doublons and kinetic dendrit
The undercooling was fixed to be 0.78, and the kinetic
isotropyek was changed from 0.04 to 0.12. The parametel
was fixed to be 1.6ID /(K1JF), i.e., b(u)}0.21ek cos 4u.
~The parameter value ofl is slightly different from that used
in Sec. III C.! Figure 8 displays the tip velocities of doublon
and dendrites. The tip velocities of doublons are alwa
larger than dendrites. Asek is increased, the difference of th
tip velocities for the two patterns is decreased and beco
almost 0 for ek>0.1. The doublonlike patterns cannot b
distinguished from two independent dendrites forek>0.1
similarly to the case of the surface tension doublons.
have also investigated the time evolution of the tip positio
of the two fingers by dislocating the two fingers of an orig

FIG. 8. Tip velocities of kinetic doublons~solid curve! and ki-
netic dendrites~dashed curve! as a function ofek for D50.78.
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nally mirror-symmetric doublon, just as the case of the s
face tension doublons forek50.04, 0.06, 0.08, 0.1 and 0.12
Figure 9 displays the time evolutions of the difference of t
tip positions for three parametersek50.04, 0.08 and 0.1. The
difference of the tip positions increases monotonously
ek50.12 and 0.1. It suggests that the leading finger wins
other and a single dendrite will survive after a long run. Th
again corresponds to the competitive time evolution of
two fingers. Forek50.08, the tip difference decays monot
nously. The critical valueek'0.09 is almost the same as th
parameter where the difference of the tip velocities of
doublon and the dendrite becomes zero, as the case o
surface tension doublon. The time evolution ofDXp exhibits
damping oscillation forek50.06. The oscillatory behavior
appear below another critical value different from the fi
critical valueek'0.09. Forek50.04, the oscillation seems t
grow in time. We have continued the calculation forek
50.04, and found that the amplitude of the oscillation b
comes too large and the two fingers are too separate
seem to become almost independent after a long run.

B. Groove oscillation of doublons

As shown in Secs. III and IV A, there is a fairly larg
parameter region, where the grooves of doublons exhibit
cillation. In most cases, the oscillation decays in time an
steadily growing doublon is obtained after a long run. W
have found that the oscillation does not decay in time in
very narrow parameter region for the surface tension d
blon. Figure 10 shows a doublon with the limit cycle
groove oscillation atD50.8 andes50.021. A longer channe
of Lx3Ly513003192 is used in this simulation to show
that the groove oscillation does not decay. Figures 11~a! and
11~b! display the time evolutions of the differenceDXp of
the tip positions of the two fingers fores50.021 ~a! and
0.022~b! at D50.8. It is clearly seen that the groove osc
lation is sustained ates50.021, but the oscillation decays i
time ates50.022. Figure 12 displays the root mean square
the tip oscillationA(DXp)2 as a function ofes for D50.8.
The groove oscillation appears for 0.018<es<0.021, and the
transition seems to be a subcritical one, since there is a ju
of the oscillation amplitude. We have performed a few sim
lations with a wider system ofLy5384 to confirm the sta-

FIG. 9. Time evolutions for the difference of the tip position
for three parameter valuesek50.04, 0.08, and 0.1.
7-7
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bility of the groove oscillation. We observed the groove o
cillation with the same amplitude also in this wider system
implies that the groove oscillation is not due to the effect
the sidewalls. The competitive interaction between the t
fingers in a single doublon is the origin of the groove osc
lation. Similar type of oscillation was observed in numeric
simulations of directional solidification by Losertet al. @16#.
In their simulations, the spacing of the doublet cellular ar
exhibits vascillation, and the grooves between the cells
cillate accompanying the vascillation, when the spacing
the cellular array is too smaller. The interaction amo
neighboring doublet cells seems to be important in the sim
lations of Losertet al. In our system, the groove oscillatio
occurs in a single doublon, and the effects of the sidew
are negligible. We do not understand well the mechanism
the groove oscillation yet, but the mechanism seems to
different from the case for the directional solidification stu
ied by Losertet al.

V. DISCUSSION

We have performed numerical simulations of doublo
with the phase-field model to obtain phase diagrams for

FIG. 10. A doublon with the limit cycle of groove oscillation a
D50.8 andes50.021.

FIG. 11. The time evolutions of the differenceDXp of the tip
positions of the two fingers fores50.021 ~a! and 0.022~b! at D
50.8.
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stability of doublons. A doublon can be interpreted as
stable bound state of two fingers. When the anisotropy
sufficiently weak andLy is large, a single finger is unstabl
and tip-splittings will occur. If the two unstable fingers inte
act with each other and form a doublon, the bound stat
stabilized and grows faster than a single finger. We will a
some qualitative explanations for our numerical results
this section.

Figure 1 shows that the tip velocities of doublons invo
ing kinetic effect are smaller than doublons without kine
effect for the same values ofD. This is because the kineti
effect decreases the interface temperatureui owing to Eq.~6!
and therefore the effective undercooling at the interface
decreased. This leads to the smaller power of the fitt
curve in Fig. 1~b! for the kinetic doublons. However, in th
range of the very smallD, it is predicted that the tip velocity
does not depend on the kinetic effect, since the tip velocit
sufficiently small for the range of very smallD and the sec-
ond term in the right-hand side of Eq.~6! could be negli-
gible. But, the scaling law will not be satisfied for smallD in
a channel system, since the doublons will become two in
pendent Saffman-Taylor-like fingers as suggested by Kup
manet al. To find the deviation more clearly, it is desirab
to study the tip velocity for even smallerD.

The groove of the doublon is partially buried in a para
eter region of large undercooling. It is probably because
width of the groove becomes narrower asD increases. When
the width of the groove becomes the same order as the w
of the interface of the order parameter, the groove shri
and partially disappears. This may be an artifact of
phase-field model.

We have found that stable doublons are formed in a
rameter region of high undercooling and low anisotrop
This result is consistent with the previous predictio
@18,19#, in which qualitative phase diagrams for the stab
region of doublons were given. We have obtained phase
grams more quantitatively using the phase-field model. T
doublon cannot be formed in a strongly anisotropic syste
instead, a dendrite appears as a stable growth pattern.
Amar and Brener predicted that the doublon appears i

FIG. 12. The root mean square of the oscillationA(DXp)2 as a
function of es for D50.8.
7-8
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parameter region satisfyingD.es
1/4 and there is a jump o

the velocity difference between the doublon and the dend
for the systemLy5`. Kupferman et al. showed that the
transition from the dendrite to the doublon is continuous a
there is no velocity jump in a narrow channel for smalles
@21#. Our simulations were performed in a channel, wh
the width is slightly wider than the case studied by Kupf
man, but the surface tension anisotropy is generally stron
than the case of Kupfermanet al. We could not find the
velocity jump and our result is consistent with the result
Kupfermanet al. for small es . If the criterion for the transi-
tion from doublon to dendrite is that the velocity differen
becomes 0 as is suggested in Sec. IV, the transition c
may be roughly evaluated asD}es

7/20, since the velocityv
}D9 for doublons is equal to the velocityv}es

7/4D4 of the
dendrite at the transition curve. We have also found that
netic doublons cannot be formed when the anisotropy
large and the undercooling is small. Near the transit
points, the tip velocities of doublons and dendrites are alm
the same. If the difference of the two tip velocities becom
0 at the transition curve from the doublon to the dendrite,
transition curve may be evaluated even for the kinetic d
blons as follows. The velocity of doublon is estimated asv
}D9. Brener and Melnikov studied dendrites involvin
strong kinetic effect based on the solvability theory@3#. The
tip velocity of the kinetic dendrite is estimated asv}ek

5/4D2

for es50. If the velocity of the kinetic dendrite is equal t
that of doublon, the transition curve between kinetic do
blons and kinetic dendrites is evaluated asD}ek

5/28. This
exponent 5/28 is smaller than the exponent 7/20 for the
face tension doublon. We have not yet identified these ex
th

ett
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nents in phase diagrams of Figs. 3 and 5. The phase diag
in Figs. 3 and 5 were obtained using only a specific init
condition and the resolution of the phase diagrams is ra
rough. In the derivation of the exponents, the sidewall effe
are neglected and the velocity scalings for doublons and d
drites are applicable for small undercooling, therefore, it
questionable that the theoretical values of the exponents
be applied in our channel system for relatively largeD. It is
left to future study to obtain more elaborate phase diagra
with different initial conditions such as the one used in S
IV A and algorithms of higher performance@22# and evaluate
quantitatively the boundary curves between doublons
dendrites.

The most interesting growth form is the oscillating do
blon. The difference of the tip positions of the two finge
exhibits clear oscillation as shown in Figs. 7, 9, and 11
implies that one finger which has fallen behind the oth
once, catches up with and then passes through the othe
ger after a while. The oscillation decays in time in mo
cases, but does not seem to decay in a very narrow param
region as shown in Figs. 10–12. The groove oscillation
doublons is observed in a parameter region inside of
stable region of doublons, that is, the boundary curve for
oscillatory behavior is apart from the transition curve b
tween doublons and dendrites, as is discussed in Sec. I
In a previous paper, we found tip oscillation of doublons a
periodic side-branchings in a different parameter regi
where the surface tension anisotropy and the kinetic ani
ropy compete, with the phase-field model in a channel@13#.
The groove oscillation and the tip oscillation are two diffe
ent modes of oscillation for a doublon.
.
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