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Numerical study of the stability of double fingers with the phase-field model
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Doublon is one of the typical patterns found in crystal growth. It is a bound state of two fingerlike patterns.
In this paper, we obtain a phase diagram for doublons with numerical simulations of the phase-field model.
Numerical simulations are performed in a channel. Two small seeds of crystal with different sizes are set on the
left side of the channel as an initial condition, in order to find whether the two fingers grow into a doublon or
one finger overcomes the other owing to mutual competition. It is confirmed that a stable doublon is formed
when the undercooling is large and the anisotropy is weak. Furthermore, we find a doublon with oscillating
groove in a certain parameter range. We investigate more carefully the transition between the doublon and the
dendrite by changing the anisotropy parameters stepwise, and show that the difference of the tip velocities of
the doublon and the dendrite increases continuously from zero at a critical value of anisotropy.
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[. INTRODUCTION For melt growth, the Ginzburg-Landau equation represents
the dynamics of phase transition from liquid to solid. The
Crystal growth has been intensively studied as a problendiffusion equation expresses heat conduction of the latent
of pattern formations far from equilibriufrl—3]. Many fas-  heat released at the growing interface. An order paranpeter
cinating patterns such as dendrites have been studied in eghanges smoothly at an interface of the liquid and the solid.
periments of crystal growtpd—6] and computer simulations An appealing point of the phase-field model is that we need
[7-9]. Recently, the phase-field model is one of the populanot solve the difficult Stefan problem with moving boundary
methods of computer simulations for crystal gro6-13.  conditions at the interface. By the improvement of the phase-
Doublon is one of the typical growth patterns in diffusion field model by Karma and Rappel, it became possible to
fields. It takes a form composed of a pair of fingers. There isimulate crystal growth without the kinetic effgdtl].
a narrow groove between the two fingers. It has the mirror | this paper, we investigate the stability of doublons in a
symmetry with respect to the center of the groove. This dougpace of anisotropy parameters and undercooling. To find the
blon structure was first _predmted by Ben_Amar and Brener agigple region, we perform numerical simulations of the
an asymmetric dendrite along the sidewglld]. They haqe field model in a channel. Two seeds of crystals with
showed analytically that the growth velocity of doublons 'S different sizes are initially set on the left side of the channel.

pr(.)tgog.iffr)ggr;[?ftrz;ngﬁéhn%ox: S;h;.t';d%?ggngl’ovxhiCheirSeThey grow into two fingers and interact with each other
quite di ' e. u s W through the diffusion field. If one finger wins and the tip

found in several experiments. Jamgotchétral. and Aka- positions of the two fingers separate away, we judge that a

matsuet al. found some doublons in experiments of direc—d blon h b f d at th ter. On the oth
tional solidification[15]. They confirmed that the doublons oubion has not been formed at the parameter. Lun he other
hand, if the other finger catches up and the tip positions

appear under the condition of low anisotropy and high un- : ;
dercooling. Furthermore, they discovered that the width oftPProach, we judge that a doublon is stable at the parameter.

groove is in inverse proportion to the undercooling. LosertVé Useé a channel system to focus on the competitive time
et al. investigated the formation and the stability of dou- €volution of two fingers. In contrast, if we use a large square
blons, changing the wavelength and strength of fluctuation80x for the simulation, many fingers are created naturally
in experiments of directional solidification and numericaland it will become difficult to judge the formation of dou-
simulations of the phase-field modgl6]. The doublons blons. Achannel system is simpler in this sense, however, the
were also found in an experiment of a drying water film by effects of the sidewalls of the channel are not negligible es-
Lipson's group[17]. Doublons are considered to exist in a pecially for small undercooling, and it makes the transition
parameter region where the dense branching morphologlyetween the dendrite and the doublon more complicated as
(DBM) appears. lhle, Mier-Krumbhaar and Brener dis- shown by Kupfermaret al. [21].
cussed qualitatively the stability region of doublons in a pa- In Sec. Il, we introduce our model equation and the nu-
rameter space of surface tension anisotropy and undercoolingerical method. In Sec. Ill, we show the numerical results.
[18,19. Breneret al. first observed the doublon structure In Sec. Il A, we study the tip velocity of doublons in case of
with a numerical simulation in a channg20] and a more no anisotropy. The growing velocity is in proportional to the
careful analysis of the transition from the dendrite to theninth power of the undercooling. In Sec. Il B, we show the
doublon in a channel was done by Kupfernetral. [21]. results of simulations in case of no kinetic effect, and in Sec.
A phase-field model is a useful model for numerical simu-1ll C, involving kinetic effect.
lation of growth patterns. It has a form of coupled equations In Sec. IV A, we study the transition between the doublon
of the Ginzburg-Landau equation and the diffusion equationand the dendrite, changing the anisotropy parameters step-
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wise, and in Sec. IVB we study groove oscillation of wherel=2v2/3, J=16/15,F=v21In2, andK=0.13604. If

doublons more in detail. the relationr(6) =W(6)? is assumed and the paramexeis
chosen a3 =(2ID)/(K+JF), the anisotropic kinetic coef-
Il. MODEL EQUATIONS ficient B(6) becomes zero, that is, the kinetic effect becomes
. ) negligible, and then the capillary length is expressed as
The phase-field model is expressed as do(6) =do[1— 15, cos(4)], wheredy=1/(AJ)~0.2769. If
the parametex is chosen such as=(1.8D)/(K+JF), the
() dp={p—ru(1—p?}(1—p?) anisotropic coefficientddy(6) and B(6) are expressed as
5 ) do(0) =dg[ 1— 15, cos(#)] and  B(60)=dg[ 0.1+ (e
+a,{W(0) dxp—W(O)W' () dyp} —0.9%,)cos 4] where dy=1/(AJ)~0.3077. We use these

2 , two parameters as typical cases without the kinetic effect and
T OAW(E) oyp+WIOW (6)0p}, (1) with kinetic effect. We have performed numerical simula-
tions of the phase-field modél), (2) with the finite differ-
d,u=DV2u+4,p/2, (2 ence method of gridsizAx=0.4 and timestep\t=0.015.
The simulations were performed in a chanfelrectangular
wherep is an order parametep=1 and—1 correspond t0  box) of size L,xL,=480x192 (Sec. Il) and 480<200
solid and liquid phase, respectivelyjs a dimensionless pa- (Sec. I\). Kupfermanet al. studied an asymmetric dendrite
rameter that controls the coupling strength between the ordehalf of the doublohin a channe[21] by solving numeri-
parameter and the diffusion field(6) is an anisotropic time cally an integro-differential equation for the interface. The
constant,W(#)? is an anisotropic diffusion constant and channel widthL,, of their system is 2, the capillary length
W’(6)=dW/d6. The variableu represents the dimension- is 0.01, and the ratio ik, /d,=200. On the other hand, our
less temperaturai=(T—Ty)/(L/C) whereT, Ty, L, and  system has a ratit, /dy=~200/0.2769- 722, although two
C, are, respectively, the temperature, the melting temperaingers grow in our system. The diffusion constant is fixed to
ture, the latent heat, and the specific heat at constant prege D=2. The anisotropy parametees and e, are changed
sure. The diffusion constant feris denoted byD. The term  from 0 to 0.06. On the other hand, Kupfermeinal. studied
ap/2 in Eq. (2) expresses the release of latent heat at thehe transitions between the dendrite and the doublon at three
interface. The anglé=arctang,p/d,p) represents the direc- parameters,=0,0.006 and 0.00667. The initial conditions
tion normal to the contour of constapt The fourfold rota-  are p(x,y,t=0)=—1 andu(x,y,t=0)=—A, whereA de-
tional symmetry is assumed for the two types of anisotropiespotes the dimensionless undercooling, except for the region
of the crystal seeds. Inside of crystal seedéx,y,t=0)
W(6)=1+e,cog40), (3 =1 andu(x,y,t=0)=0. No-flux boundary conditions are
used atx=0 andy=0L,, and fixed boundary conditions
p(x,y)=—1u(x,y)=—A are used ak=L, in the simula-

7(6) =W(6){1+e,cog46)}, 4 tions.
where the parameters; and e, denote strength of surface
tension anisotropy and that of kinetic anisotropy respectively. IIl. SIMULATION RESULTS
Constants parts dlV and 7 are assumed to be 1 in Eq8)
and (4). They determine the spatial and time scales of the A. Tip velocity of doublon

order parameter. In this paper, we express length and time fjrst we show numerical results for the tip velocity of

with these units. Karma and Rappel derived the sharpgoypions in an isotropic system, i.ey=e,=0. Two small

interface limit of the phase-field model as seeds of crystal of the same size are set on the left side of the
JUu=DV2u ®) channel as an initial condition. Doublons with the mirror-

t ' symmetry grow naturally. We have measured the tip velocity,
changing the degree of undercoolitgWe have investigated
Ui=—do(8) k= B(O)vy. ®)  poth cases with and without the kinetic effect. In Figa)l
we show the tip velocity as a function dffor the case of no

Equation(5) is the diffusion equation fou and Eq.(6) is the kinetic effect. Figure (b) is the same type plot as Fig(al

generalized Gibbs-Thomson condmon, respectlvgly, Wh.er%ut the kinetic effect is involved. The plus marks denote the
do(6), «, B(A) and v, denote respectively the anisotropic

capillary lenath. the interface curvature. the anisotropic ki_results of numerical simulations, and the solid lines are fit-
pifiary ‘engin, ' b ting curves of power laws.

netic coefficient and the normal interface velocity. These pa- In the theory of Ben Amar and Brener, the tip velocity is

rameters can be expressed usiigf) and (6) as proportional to the ninth power ok for small A [14], al-
| though they consider a system bbf= . Kupfermanet al.
do(0)= —={W(6)+W"(6)}, (7)  showed that an asymmetric dendritioublor cannot exist
A below a critical undercooling abot~0.66. We have ob-
) served in our simulations that the groove width between the
B(6)= '_ 7(6) _ Wo(6) K+JF ®) two fingers is sufficiently small and the effects of the side-
NI W(6) 2D7(6) | ' walls seem to be negligible for large. But whenA is de-
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0.35 4 —Fitting curve radius of the one seed is 1.2, and that of the other is 1. The
030-y=3.1A%¢ centers of the two seeds locate atl(#2—1.6) and (Q..,/2
0.25- + Result of simulation +1.6). In this section, we show the numerical results for the

case of no kinetic effect, that i9, is set to be (2D)/(K
+JF) and 7(8) =W?(6). Since the surface tension anisot-
ropy determines the growth direction, we call this type of
doublon a surface tension doublon, as an analogue of the
surface tension dendrite. Furthermore, in order to investigate
the influence of the sidewalls of channel, we have used two
kinds of channels with., =192 and 96. We have obtained,
roughly speaking, similar phase diagrams for the two chan-
nels. However, there appeared some patterns which seemed
I to be strongly influenced by the sidewalls in the simulations
of Ly=96, so, we show numerical results only for the chan-
nel of L,=192. In Fig. 2, we show some time evolutions of
patterns. We have judged that the growth patterns are stable
doublons if the tip positions for the two fingers approach
each other, and confirmed it by the fact that the diffusion
length is larger than the width of the groove of the doublon.
If the diffusion length is larger than the groove width, two
fingers interact with each other via the diffusion field and a
bound state of two fingers is formed as a doublon. Figure
2(a) is an example of a stable doublon &t=0.78 andeg
=0.005. Even if the sizes of two seeds are initially different,
a mirror-symmetric doublon is finally generated. In Fi¢)2
at A=0.72 ande,=0.02, two fingers are generated but one
finger overcomes the other. The difference of the tip posi-
. . T . T — tions of two fingers increases in time. The doublon is not
0.68 0.72 0.76 0.80 formed at this parameter set. In FigcRat A =0.82 andeg
& a =0.01, the groove is partially buried, although the tip struc-

FIG. 1. Double-logarithmic plot of the velocity dependence of ture keeps a stable one. This type of growth pattern appears

the doubl A f =0 and (b =d.x01 Inthe range of high undercooling. In our phase-field model,
:g.os%u??.on ona for @ A(6) and (b) A(6)=do the interface between the solid and the liquid has a finite

thickness. On the other hand, the groove becomes narrower
as the undercooling is increased. We expect that the partial
. . disappearance of the groove occurs when the interface thick-
sion lengthD/v increases up to the order b{/2 and then ness becomes comparable to the groove width, so this may

the influence of the sidewalls becomes largeAlfis de- . & .
creased to 0.64, we cannot regard the growth pattern con%:’-e an artifact of the phase-field model. In FigdRat A

posed of two fingers as a doublon; it looks like two indepen—: 0.62 ande,=0.005, the growth directions of the two fin-

dent Saffman-Taylor type fingers. So, our results do noders are declined from the x direction, since the anisotropy
contradict to the results of Kupfermat al. The numerically parametes; is very small, and the two fingers grow like the

estimated exponents of the power law are about 9.6 in Cas[SeaI"fman—Taonr fingers with very small velocities. This is a
of negligible kinetic effect and 8.8 in case of finite kinetic _yp|cal pattern, which appears in the range of low undercool-

effect. In both cases, the fitting curves are close to a curve oy The tip velocity is very small because of the low under-

A®. That is, our result suggests that the tip velocity of dou_coollng. Since the diffusion lengtb/v is sufficiently large

blons satisfies approximately the scaling law found b Benand it is comparable to or larger thdy/2, the interaction
PP y g 'aw 1o Y with the sidewalls becomes important. If the sidewall effects
Amar and Brener, although the undercoolikgs fairly large

and the doublons grow in a channel are absent, a stable doublon may appear, but we could not
' judge it a stable doublon in our channel lof=192 at the

parametersA =0.62 ande,=0.005. Kupfermaret al. also
showed that the doublon cannot exist A 0.66 for eg

In this section, we search for the stable region of doublons=0.006. A more drastic example, where a doublon could not
in a parameter space of the parametgof the surface ten- be formed, is displayed in Fig.(2 at A=0.72 andeg
sion anisotropy and the undercooling. We judge that a dou=0.04. The competitive time evolution of two fingers is not
blon is stable, if a mirror-symmetric doublon is formed as aseen at all, and a single dendrite appears from the beginning.
stable growth structure from an asymmetrical initial condi-In a fairly large parameter region, we have found doublons,
tion. To investigate it, we have set two seeds of crystal withwhose grooves are slightly oscillating, although the oscilla-
different sizes on the left side of the channel as an initiation gradually attenuates and stationary doublons are finally
condition. Both of them have a shape of a semicircle. Aobtained in most cases. FigurdeR displays a doublon
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0.25 |—Fitting curve
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+ Result of simulations
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creased, the tip velocity becomes very slow and the diffu-

B. Surface tension doublon
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FIG. 2. Several growth pat-
y terns for surface tension doublons.
150 (a) Stable doublon made by sur-
face anisotropy.(b) One finger

wins. (c) Surface tension doublon
ol whose groove is partially buried.
(d) Two fingers pattern of surface
' ' ' ' T tension doublon.(e) Oscillating

Ed

o 100 200 300 400 .
(b) A=0.72,8,=0.02 (2] A=0.78,85:0.0125 groove. (f) A surface tension
dendrite.
y y
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(c)a=0.82,8,=0.01 (fla=0.72,8.=0.04

accompanying such damping groove oscillation. In a very In Fig. 3, we show a phase diagram for the stability of
narrow parameter range arou(g in Fig. 3, the groove os- doublons. This phase diagram was obtained by changing
cillation does not decay and the limit cycle of groove oscil-stepwise by 0.02 from 0.6 to 0.82 aaglby 0.0025 from 0 to
lation is observed. We study the groove oscillation more in0.04, and the transition lines were drawn smoothly by hands.

detail in Sec. IVB. This phase diagram was drawn by observing the time evolu-
tions of growth patterns for each parameter sgt4) using
A, the same initial condition used for the simulations shown in
os2| (e) Fig. 2. The alphabets in the figure correspond to the patterns

shown in Fig. 2. In the region&), (c) and (e), stable dou-
blons have appeared. The doublons are stationary in the re-
gion (a), the groove oscillation is seen in a parameter region
around(e), and the groove is partially buried in the regi@
(although it may be an artifact of the phase-field madel
the regions(b), (d) and (f), stable doublons have not been
formed. A single dendrite has appeared from the beginning in
the region(f), competitive time evolution of two fingers is
observed in the regioth) and the formation of doublons is
not observed probably owing to the finitenessLgfin the
region(d). In general, high undercooling and low anisotropy
are favorable for the formation of doublons. If the surface
tension anisotropy increases too much, a doublon cannot be
formed, instead, a stable dendrite appears. As the undercool-
ing is decreased too much for relatively small a doublon

FIG. 3. Phase diagram of surface tension doublon. The alpha(::ann,Ot be formed, instead, two independent S.affman.-Taonr-
bets in the figure correspond to the growth patterns in Fig. 2. ThelK€ fingers appear. We have drawn a phase diagram in Fig. 3
region arounda) is a parameter region where a stable doublon hag!Sing only one initial condition. The competitive time evo-
appeared. In the region aroute, the doublons with an oscillating 1ution between two fingers depends on the initial conditions
groove appear. The doublon structure has not been formed in th@nd the computation timgor example, if the size difference
region around(b), (d) and (f). The region aroundc) denotes a of the initial two seeds is very small, it takes very long time
region where the doublonlike pattern is stable; however, the groovéor the competitive dynami¢sand therefore the boundary
is partially buried. In a very narrow parameter range aroighdthe  line between stable doublorta), (c), (e) and dendritegb),
groove oscillation does not decay and the limit cycle of groove(f) in Fig. 3 is expected to depend on the initial conditions.
oscillation is observed. (See the discussion in Sec. )\t is expected that there is no
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I,

0 100 200 300 400 o 100
(a) A=0.8,5=0.01 (d} A=0.64,3,=0.01

FIG. 4. Several growth pat-

,5);_ 1:0_ terns for kinetic doublons.(a)
Stable doublon made by kinetic

100 100, anisotropy. (b) Tip splitting. (c)
Kinetic doublon whose groove is

7 0] partially buried. (d) Two finger
pattern of kinetic doublon.(e)

T T T T T . . . .
0 100 200 300 X 400 o 100 200 300 200 X Oscillating groove.(f) A kinetic
(b} 4=0.8,8,=0.025 () 4=0.78,5,=0.025 .
A ‘ * dendrite.

Yy

150

100, =

50
T T T T T
0 100 200 300 X 00

(c)4=0.828=0.01 (fa=0.78,8=0.04

boundary between stable doublof®), (c), (e) and two In the regions(a) and(c), stable doublons are observed. In
Saffman-Taylor type finger&d) if the width L, is infinity,  the region(f), a single kinetic dendrite appears from the be-
since doublons exist stably evenegt=0 for L, =oe. ginning. In the regior(d), the tip velocity is too slow, stable
doublons are not formed, and two fingers like the Saffman-
Taylor fingers appear. In the transition regions aro(imdnd
C. Kinetic doublon (e), complicated patterns appear. In the region aro(md

. . . . tip-splitting are observed, and in the region aroyrd the
Next, we show the results of numerical simulations in- p-sp g 9 uer

cluding the kinetic effect. For simplicity, the surface tension
anisotropy is assumed to be 0, i.e;=0. The initial condi- a
tions are the same as in Sec. Ill B. The growth direction is **[
determined by the kinetic anisotropy, and we call this type of °®T
doublon a kinetic doublon in this paper as an analogue of the °®
kinetic dendrite. If the kinetic parameteg takes a negative o7 |
value, patterns grow along the channel direction. For the oz}
sake of simplicity, we express the absolute valueose, o7z |
hereafter. In Fig. 4, we show typical growth patterns of ki- ,
netic doublons. Figure(d) shows a stable doublon pattern at
A=0.8 ande,=0.01. In Fig. 4b), a stable doublon cannot
be formed and tip splittings occur At=0.8 ande,= 0.025.
Figure 4c) displays a doublonlike pattern &=0.82 and
e,=0.01, where the groove is partially buried owing to too °%#T
large undercooling. Figure(d) is a pattern al\=0.64 and
e,=0.01. The tip velocity is very slow and the diffusion
length is sufficiently large. The doublon cannot be formed
and two Saffman-Taylor-like fingers appear owing to too low

gndercoollng and relatlvely. small an'SOtro_py'. Figute)4s figure correspond to the patterns in Fig. 4. In the region ardand
interpreted as a _doublon with groove oscillationAat0.78 e stable doublon has appeared. In the region aréein@ groove
and e,=0.025. Figure &) shows a pattern ak=0.78 and  of the doublon exhibits damping oscillation or tip branching. We
e,=0.04, in which only one finger appears from the begin-can find tip splitting patterns in the region arouil. In the region
ning and it grows into a kinetic dendrite. Figure 5 is a phasearound(d) and (f), a stable doublon has not been formed. In the
diagram for the stability of the kinetic doublon. The alpha-region around(c), a pattern with partially buried groove has ap-
bets in the figure correspond to the patterns shown in Fig. 4eeared.

o

068 |-

066 -

064 |-

FIG. 5. Phase diagram of kinetic doublon. The alphabets in the
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groove oscillation is observed. The difference of the two T I I T
phase diagrams shown in Figs. 3 and 5 for the surface ten- v 06 I
sion doublon and kinetic doublon is discussed in Sec. V. o
IV. TRANSITIONS OF DOUBLONS 0.4 | doublon
A. Transitions between doublons and dendrites

In the previous section, we have shown phase diagrams A3 ,a’;ndme ]
for the surface tension doublon and the kinetic doublon. 0.2 [ |
When the anisotropy is weak and the undercoolifigs i \ | , \
large, stable doublons have been observed. It is known that 001 002 003 004 005 006

the dendrite is linearlfor marginally stable if the anisot-

PHYSICAL REVIEW E70, 011607 (2004

=3

ropy parameter is not zero ahg=o [2,3,7. The doublon . N ) .

and the dendrite can therefore coexist in a certain parameter F!G- 6. Tip velocities of doublonlike patterrisolid curve and
range. That is, which structure appears depends on the initidfndritic pattemsdashed curveas a function o for A=0.75.
conditions. The transitions between the dendrites and the

doublons in a channel were studied in detail by Kupfermarlarger than the dendrites, but the velocity difference changes
et al. [21]. They showed that the transition from symmetric continuously and becomes almost Oegt=0.04. We could
dendrites to parity-broken dendritégoublon is continuous  not find a clear jump of velocity difference predicted by Ben
for e,=0 and 0.006 but it is discontinuous and the velocityAmar and Brenef{14] in this simulation. The continuous
jumps ates=0.00667. They also showed that both the dou-transition may be consistent with the results of Kupferman
blon and the dendrite are linearly stable for a certain paramet al. for small anisotropy. Cooperative interaction between
eter region. Ben Amar and Brener discussed the transitiofhe two fingers makes the tip velocity of doublons faster than
between the dendrite and the doublon for a systentof that of dendrites. Since the two types of patterns have almost
=, and expected that there is a velocity jump at the tranthe same velocity fores>0.04, doublonlike patterns with
sition. The width of our channel is slightly wider and our two fingers may be interpreted as patterns composed of two
anisotropy parameter is larger in most cases than the case ibdependent dendrites. The paramedgr 0.04 can be inter-
Kupfermanet al,, so the effects of the sidewalls seem to bepreted as a transition point from doublons to dendrites for
weaker than the case of them. We will investigate whetheA =0.75. We have investigated the stability of doublonlike
such a velocity jump exists in our system. To investigate itpatterns by dislocating initially the two fingers of the dou-
we change the anisotropy parameters slowly stepwise, sindgdonlike patterns. That is, the initial condition was slightly
there is hysteresis generally in bistable systems and whicbhanged as p(x,y,t=0)=p’(x+340y), u(x,y,t=0)
pattern appears depends on the initial conditions. Our nu=u’(x+340y) for x<140 andy>100=L/2 andp(x,y,t
merical procedure is as follows. Two small seeds of crystaF0)=p’'(x+344y), u(x,y,t=0)=u'(x+344y) for x

with the same size are set on the left side of the channel as an140 andy<100=L /2, wherep’(x,y) andu’(x,y) are the
initial condition for the doublonlike pattern at a certain small saved data of the mirror-symmetric doublon. That is, the
anisotropy parameteffor examplee,=0.01), and a single lower half of the doublon is shifted by 4 in the directiomof
small seed of crystal is set in the middle of the left side of theThe difference of the tip positions of the two fingers is there-
channel as another initial condition for the dendritic patternfore 4 initially. We have investigated the time evolution of
at a large anisotropy parametéor examplee,;=0.06). If the  the difference of the tip positions. Figure 7 displays the time
tip of the growth pattern reaches a critical val(fer ex-  evolutions for four parametees=0.06, 0.04, 0.02, and 0.01.
ample, x=x,=440) in a box ofL,xL,=480x200 for a The differenceAX, of the tip positions increases monoto-
certain anisotropy parameter, the time evolution is stopped,

and the numerical data for the order parameter and the tem- Ax
perature are saved in computer. The order parameter and the
temperature profiles in the tip regigp’(x,y),u’(x,y)] are

used as the initial condition for the next anisotropy parameter

as p(x,y,t=0)=p’'(x+340y), and u(x,y,t=0)=u’(x

+340y). (For example,es is increased by 0.01 for dou-

blonlike patterns, an@ is decreased by 0.01 for dendritic

patterns. We have repeated the above processes by changing

the anisotropy parameter stepwise. Both doublonlike patterns

and dendritic patterns keep the mirror-symmetric forms in

this time evolution even if the anisotropy parameters are
changed. We have calculated the tip velocities for dou-

blonlike patterns and dendritic patterns. Figure 6 displays the

tip velocities of surface tension doublons and surface tension
dendrites for 0.0%e,<0.06 for a fixed value of undercool- FIG. 7. Time evolutions for the difference of the tip positions
ing A=0.75. The tip velocities of the doublons are alwaysfor four parameter values,=0.06, 0.04, 0.02, and 0.01.

0 200 400 600 800 1000
-
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FIG. 8. Tip velocities of kinetic doublon&olid curve and ki-

FIG. 9. Time evolutions for the difference of the tip positions
netic dendritegdashed curveas a function of, for A=0.78. PP

for three parameter valuez=0.04, 0.08, and 0.1.

nously fore;=0.06. The leading finger overcomes the otherp|iy mirror-symmetric doublon, just as the case of the sur-
after a long run at this parameter. This corresponds to the; ¢ tension doublons fa,=0.04, 0.06, 0.08, 0.1 and 0.12.
competitive time evolution of two fingers, as seen in thegjgre g displays the time evolutions of the difference of the
previous section. Ags=0.05, the differencé\ X, increases iy hositions for three parametezg=0.04, 0.08 and 0.1. The
very slowly, but it decays monotonously feg=0.04 and iference of the tip positions increases monotonously for
0.03. It means that the doublon structure with the MIMMore, — .12 and 0.1. It suggests that the leading finger wins the
symmetry is recovered fag<0.04 after a long run, that is, gther and a single dendrite will survive after a long run. This
the doublon structure is stable. This critical parameer  54ain corresponds to the competitive time evolution of the
~0.045 is almost the same as the transition parameter whegg,o fingers. Fore,=0.08, the tip difference decays monoto-
the difference between the tip velocities of the doublon a”qmusly. The critical valuéka.OQ is almost the same as the
the dendrite becomes 0. This transition point is rather largefarameter where the difference of the tip velocities of the
than the transition poiné;~0.023 found in Fig. 3. This is  qoyblon and the dendrite becomes zero, as the case of the
not a contradiction since the transition curve in Fig. 3 iSgyface tension doublon. The time evolutionAX.. exhibits
determined by numerical simulations starting from a certairyamping oscillation fore,=0.06. The oscillatoryp behaviors
initial condition. This critical parametee;~0.045 is ex-  gnnear below another critical value different from the first
pected to be obtained when the initial size difference of the. iticql valuee,~0.09. Fore, = 0.04, the oscillation seems to
two seeds is infinitesimally small. The differense, exhib- grow in time. We have continuéd the calculation fey

its damping oscillation fore;=0.01 and 0.02. This corre- —( g4, and found that the amplitude of the oscillation be-
sponds to the groove oscillation in the previous section. Theymes too large and the two fingers are too separate and

groove oscillation occurs below another critical parametegeem to become almost independent after a long run.
es~0.025, which is smaller than the critical parameggr

~0.045 for the stability of doublons. That is, the oscillatory
behavior appears inside the stable region of doublons. The
transitions between the doublons and the dendrites studied As shown in Secs. lll and IVA, there is a fairly large
by Kupfermanet al. in a channel are very complicated for parameter region, where the grooves of doublons exhibit os-
nonzeroe,, and the oscillatory behaviors are not reported incillation. In most cases, the oscillation decays in time and a
their paper{21]. The detailed quantitative comparison with steadily growing doublon is obtained after a long run. We
their results is left to future study. have found that the oscillation does not decay in time in a
We have performed the same type simulations to study th¥ery narrow parameter region for the surface tension dou-
transition between kinetic doublons and kinetic dendritesblon. Figure 10 shows a doublon with the limit cycle of
The undercooling was fixed to be 0.78, and the kinetic angroove oscillation aA = 0.8 andes;=0.021. A longer channel
isotropye, was changed from 0.04 to 0.12. The paramater of L,XL,=1300x192 is used in this simulation to show
was fixed to be 1/(K+JF), i.e., B(6)x0.2+e,cos4. that the groove oscillation does not decay. Figureg)land
(The parameter value of is slightly different from that used 11(b) display the time evolutions of the differencex, of
in Sec. 11l C) Figure 8 displays the tip velocities of doublons the tip positions of the two fingers fog;=0.021 (a) and
and dendrites. The tip velocities of doublons are alway$.022(b) at A=0.8. It is clearly seen that the groove oscil-
larger than dendrites. A, is increased, the difference of the lation is sustained a,=0.021, but the oscillation decays in
tip velocities for the two patterns is decreased and becomd#ne ate;=0.022. Figure 12 displays the root mean square of
almost 0 fore,=0.1. The doublonlike patterns cannot be the tip oscillation\/(AXp)2 as a function ofeg for A=0.8.
distinguished from two independent dendrites &&=0.1  The groove oscillation appears for 0.648,<0.021, and the
similarly to the case of the surface tension doublons. Wedransition seems to be a subcritical one, since there is a jump
have also investigated the time evolution of the tip positionf the oscillation amplitude. We have performed a few simu-
of the two fingers by dislocating the two fingers of an origi- lations with a wider system af, =384 to confirm the sta-

B. Groove oscillation of doublons
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f "
> | \
FIG. 10. A doublon with the limit cycle of groove oscillation at 5},2_ |
A=0.8 ande;=0.021.

bility of the groove oscillation. We observed the groove os-
cillation with the same amplitude also in this wider system. It ' 'I
implies that the groove oscillation is not due to the effect of { \
the sidewalls. The competitive interaction between the two l

fingers in a single doublon is the origin of the groove oscil-
lation. Similar type of oscillation was observed in numerical
simulations of directional solidification by Loseat al.[16].

In their simulations, the spacing of the doublet cellular array FIG. 12. The root mean square of the oscillatig@X_)Z as a
exhibits vascillation, and the grooves between the cells O?-unctioﬁ ofe. for A—0.8 P
cillate accompanying the vascillation, when the spacing o s o

the cellular array is too smaller. The interaction amon . .
neighboring doub)llet cells seems to be important in the simg§tab|||ty of doublons. A doqblon can be mterprgted as a
lations of Losertet al. In our system, the groove oscillation stab_le_ bound state of t_WO fingers. _When_ the gnlsotropy IS
occurs in a single doublon, and the effects of the sidewallSufficiently weak and., is large, a single finger is unstable
are negligible. We do not understand well the mechanism o@nd tlp-spllttlngs will occur. If the two unstable fingers inter-
the groove oscillation yet, but the mechanism seems to pact with each other and form a doublon, the bound state is

different from the case for the directional solidification stud- Stabilized and grows faster than a single finger. We will add
ied by Losertet al. some qualitative explanations for our numerical results in

this section.

Figure 1 shows that the tip velocities of doublons involv-
ing kinetic effect are smaller than doublons without kinetic
We have performed numerical simulations of doublonseffect for the same values df. This is because the kinetic

with the phase-field model to obtain phase diagrams for theffect decreases the interface temperatym@wving to Eq.(6)
and therefore the effective undercooling at the interface is
decreased. This leads to the smaller power of the fitting
ﬂ curve in Fig. 1b) for the kinetic doublons. However, in the
range of the very smald, it is predicted that the tip velocity
does not depend on the kinetic effect, since the tip velocity is
sufficiently small for the range of very small and the sec-
ond term in the right-hand side of E€G) could be negli-
1| \ f t gible. But, the scaling law will not be satisfied for smalin
\‘J V J l,.J a channel system, since the doublons will become two inde-
pendent Saffman-Taylor-like fingers as suggested by Kupfer-
20:00 ' man et al. To find the deviation more clearly, it is desirable
Tims to study the tip velocity for even smalléy.
The groove of the doublon is partially buried in a param-
eter region of large undercooling. It is probably because the
width of the groove becomes narrowerf&increases. When

T |
0.018 0.022

V. DISCUSSION

&

L] 500 1000 1500 2500 3000

ax

(b)

FIG. 11. The time evolutions of the differenceX, of the tip

positions of the two fingers foe;=0.021 (a) and 0.022(b) at A
=0.8.

the width of the groove becomes the same order as the width
of the interface of the order parameter, the groove shrinks
and partially disappears. This may be an artifact of the
phase-field model.

We have found that stable doublons are formed in a pa-
rameter region of high undercooling and low anisotropy.
This result is consistent with the previous predictions
[18,19, in which qualitative phase diagrams for the stable
region of doublons were given. We have obtained phase dia-
grams more quantitatively using the phase-field model. The
doublon cannot be formed in a strongly anisotropic system,
instead, a dendrite appears as a stable growth pattern. Ben
Amar and Brener predicted that the doublon appears in a
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parameter region satisfying>el* and there is a jump of nents in phase diagrams of Figs. 3 and 5. The phase diagrams
the velocity difference between the doublon and the dendritén Figs. 3 and 5 were obtained using only a specific initial
for the systemL,=<. Kupfermanet al. showed that the condition and the resolution of the phase diagrams is rather
transition from the dendrite to the doublon is continuous andough. In the derivation of the exponents, the sidewall effects
there is no velocity jump in a narrow channel for sm&jl  are neglected and the velocity scalings for doublons and den-
[21]. Our simulations were performed in a channel, wheredrites are applicable for small undercooling, therefore, it is
the width is slightly wider than the case studied by Kupfer-questionable that the theoretical values of the exponents can
man, but the surface tension anisotropy is generally strongeje applied in our channel system for relatively lafgelt is

than the case of Kupfermaet al. We could not find the |eft to future study to obtain more elaborate phase diagrams
velocity jump and our result is consistent with the result byith different initial conditions such as the one used in Sec.
Kupfermanet al. for smalle. If the criterion for the transi- |\ A and algorithms of higher performan§22] and evaluate

tion from doubl(_)n to dendrite_is that the velocity d_if_ference uantitatively the boundary curves between doublons and
becomes 0 as is suggested in Sec. IV, the transition curvVgsnqrites.

7120 : H
may be roughly evaluated a@sxes™", since the velocity The most interesting growth form is the oscillating dou-

<A for doublons is equal to the velocityxe[“A* of the  plon. The difference of the tip positions of the two fingers
dendrite at the transition curve. We have also found that kiexhibits clear oscillation as shown in Figs. 7, 9, and 11. It
netic doublons cannot be formed when the anisotropy ismplies that one finger which has fallen behind the other
large and the undercooling is small. Near the transitiorpnce, catches up with and then passes through the other fin-
points, the tip velocities of doublons and dendrites are almosjer after a while. The oscillation decays in time in most
the same. If the difference of the two tip velocities becomescases’ but does not seem to decay ina very narrow parameter
0 at the transition curve from the doublon to the dendrite, tthgion as shown in F|gs 10-12. The groove oscillation of
transition curve may be evaluated even for the kinetic doudoublons is observed in a parameter region inside of the
blons as follows. The velocity of doublon is estimatedvas stable region of doublons, that is, the boundary curve for the
«A® Brener and Melnikov studied dendrites involving oscillatory behavior is apart from the transition curve be-
strong kinetic effect based on the solvability thef8y. The  tween doublons and dendrites, as is discussed in Sec. IV A.
tip velocity of the kinetic dendrite is estimated ase}A?  Ina previous paper, we found tip oscillation of doublons and
for es=0. If the velocity of the kinetic dendrite is equal to periodic side-branchings in a different parameter region,
that of doublon, the transition curve between kinetic dou-where the surface tension anisotropy and the kinetic anisot-
blons and kinetic dendrites is evaluated Aaseﬁ’%. This  ropy compete, with the phase-field model in a charh8l.
exponent 5/28 is smaller than the exponent 7/20 for the surfhe groove oscillation and the tip oscillation are two differ-
face tension doublon. We have not yet identified these expeent modes of oscillation for a doublon.
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